

S T R A TE G Y & I N N O VA TI O N

CONTENT DELIVERY WITH CONTENT-
CENTRIC NETWORKING

Prepared by:
 Greg White
 Distinguished Technologist, Core Innovation
 g.white@cablelabs.com

 Greg Rutz
 Lead Architect, Advanced Technology Group
 g.rutz@cablelabs.com

February 2016
© Cable Television Laboratories, Inc., 2016

Content Delivery with Content-Centric Networking

2 CableLabs®

Table of Contents
EXECUTIVE SUMMARY .. 3

1 INTRODUCTION .. 4

2 REGIONAL IP NETWORK & CDN OVERLAY .. 5

2.1 REGIONAL IP NETWORK .. 5
2.2 CDN OVERLAY .. 6

2.2.1 Cache Tiers and Groups ... 6
2.2.2 Traffic Router .. 7
2.2.3 Content Routing ... 7
2.2.4 "Hot" Caches ... 8
2.2.5 Traffic Monitor ... 8
2.2.6 Request and Content Flow .. 9

3 CONTENT-CENTRIC NETWORKING .. 9

4 CCN IMPACTS ON EXISTING NETWORKS... 12

5 BENEFITS OF CCN RELATIVE TO HTTP CDN .. 13

5.1 SIMPLER, HIGHER PERFORMANCE CACHE IMPLEMENTATION ... 13
5.2 STRIPING OF CONTENT AND CACHE BALANCE .. 13

5.2.1 Islands of CCN Caches .. 15
5.2.2 Propagating CCN Beyond the Islands .. 17

5.3 CCN ROUTING - NO HAIRPINNING ... 17
5.4 MULTICAST ... 18

6 CCN TRANSITION COMPONENTS .. 19

6.1 HTTP->CCN PROXY .. 19
6.2 CCN->HTTP PROXY .. 19

7 UNSOLVED PROBLEMS .. 21

8 CONCLUSION ... 22

APPENDIX A ALL CACHES SUPPORT CCN .. 23

APPENDIX B REFERENCES .. 25

List of Figures
FIGURE 1 - MODEL NETWORK ARCHITECTURE ... 5
FIGURE 2 - CDN TIER STRUCTURE ... 6
FIGURE 3 - IN-PATH CACHING .. 14
FIGURE 4 - OUT-OF-PATH CACHING .. 14
FIGURE 5 - CCN ISLAND ... 15
FIGURE 6 - CCN ISLAND DETAIL WITH PROXY APPLIANCE .. 16
FIGURE 7 - EDGE CACHE GROUP WITH MULTIPLE HTTP->CCN PROXIES .. 16
FIGURE 8 - HTTP->CCN PROXY .. 19
FIGURE 9 - CCN->HTTP PROXY .. 20
FIGURE 10 - EXAMPLE CRAN WITH ALL CACHES UPGRADED TO CCN ... 23

Content Delivery with Content-Centric Networking

CableLabs® 3

EXECUTIVE SUMMARY

Information Centric Networking is an emerging networking approach that aims to address many of
the shortcomings inherent in the Internet Protocol; in current networks and in the networks
envisioned in the future. One specific approach to Information Centric Networking, also known as
Content-Centric Networking (CCN) and/or Named Data Networking (NDN), appears to be gaining
mindshare in the research community and in industry, and promises to significantly improve
network scalability, performance, and reduce cost over a network built on the Internet Protocol.
CCN/NDN provides native and elegant support for client mobility, multipath connectivity, multicast
delivery and in-network caching; many of which are critical for current and future networks, and all
of which require inefficient and/or complex managed overlays when implemented in IP. Further,
CCN/NDN provides a much richer addressing framework than that existing in IP, which could
eliminate significant sources of routing complexity.

As HTTP/IP is baked into the networking field (equipment, software stacks, applications, services,
engineering knowledge, business models, even national policies), it may seem daunting to consider
the use of a non-IP protocol. However, while IP has been a phenomenally successful networking
protocol for the last 40 years, as technology and time progress it is reasonable to believe that we
won’t be utilizing it forever. In this paper, we examine whether some of the networking issues that
exist in current networks already point to CCN/NDN as being a better alternative, and if so, how an
HTTP/IP network operator might begin to reap the benefits while minimizing the cost and
complexity of the transition.

One aspect of CCN/NDN, the native support for in-network caching, offers a much simpler and
potentially more optimal alternative to the Content Distribution Network (CDN) paradigm that has
been built to support HTTP/IP content distribution. An investigation into the mechanics of an HTTP-
based CDN (as it might be implemented by an Access Network Service Provider) reveals a number of
areas in which this approach is strained. The possibility exists for a phased transition of an HTTP-
based CDN into a network making use of the CCN protocol, and highly optimized for content
distribution. In addition, the native multicast distribution capability of CCN/NDN can be leveraged to
optimize the transport of linear video streaming services, without introducing all of the complex
control/management plane aspects inherent in IP Multicast.

Our analysis indicates that it is possible to realize significant benefits through an incremental
introduction of CCN/NDN into an existing CDN implementation. CCN->HTTP and HTTP->CCN proxies
can create small “islands” of CCN/NDN functionality that can begin to eliminate some of the
performance and management issues encountered in modern CDNs. By striping content across
multiple caching routers at the Content Object-level, the “hot cache” problem is eliminated.
Additionally, link utilization is reduced because content retrieved from higher-tier cache levels will
not “hairpin” through the caches on the way to the client as it does today. It is important to note
that these benefits can be achieved without making modifications to existing IP routers.

CCN/NDN has other features that may be equally compelling for cable network operators (notably
native mobility and multipath networking). These are not covered in this report. We anticipate a
follow-on report that will investigate those aspects.

To be clear, CCN/NDN is not a mature protocol ready for immediate deployment. A number of R&D
issues are still being worked in academic and industry research groups (including CableLabs), and
implementations (both endpoint stacks and network gear) are still largely in the reference
implementation or proof-of-concept stage. However, development work is active and confidence is
high that the protocol will be made ready for prime time in the next 3-5 years.

Content Delivery with Content-Centric Networking

4 CableLabs®

1 INTRODUCTION

Content-Centric Networking (CCN) is an innovative new networking protocol designed around the
fact that today’s Internet is largely used as a medium over which content flows from producers to
consumers. This is in contrast to the host-centric Internet Protocol (IP), which is designed around the
paradigm of point-to-point communication between two network endpoints. CCN is a single
incarnation of a larger field of research known as Information-Centric Networking (ICN).

In the majority of current network applications, consumers demand specific data objects, but don’t
particularly care from which server or network endpoint the data is served. In fact, many network
technologies we have come to rely upon (Content Delivery Networks, Load Balancers, GeoDNS, etc.)
were designed specifically to bridge the gap between the host-centric nature of IP and the
information-centric demands of modern Internet applications.

One of the key features of CCN (and several other ICN approaches) is the idea that each network
node (i.e., router or endpoint) incorporates a Content Store to potentially cache data that has
traversed its interfaces. Similar to an HTTP Transparent Cache, this has the benefit of moving
content storage closer to the network edge and the devices that are requesting it. However, unlike
an HTTP Transparent Cache, this functionality is built into the network itself, and is enabled due to
the fact that CCN provides object security (objects are signed and potentially encrypted by the origin
publisher, and stored immutably in caches) rather than connection security (the transport
connection from the client to a trust-verified server is encrypted) as is provided in HTTP (via HTTPS).
As a result, secure objects are cacheable in CCN, where objects carried over a secure connection are
not.

A network in which storage is a first-class entity is expected to operate much more efficiently and
with higher performance than today’s HTTP/IP network. Moreover, the role of the CDN is largely
subsumed by the network itself, instead of relying on the typical “overlay” of CDN components onto
the basic IP network.

This paper describes a typical IP network with CDN overlay and discusses how a CCN-based solution
might improve performance as well as eliminate some of the problems encountered with modern
CDN deployments. The focus is on the technical aspects rather than on the impacts this would have
on the business of providing CDN services. Additionally, it is recognized that a move to a
fundamentally different networking protocol cannot be made overnight. Thus, proposals are
presented for incrementally introducing CCN into existing IP CDN networks, while attempting to
recognize some of the benefits of CCN at each transitional step. Our suggestions are intended to
limit the backwards-compatibility issues of network nodes, servers, and client devices that may not
have yet been upgraded to support CCN.

As of the writing of this paper, the architectures proposed here have not been tested
experimentally. The architectures are provided to guide the development of a more fine-grained
system design, and we identify some areas where further research may be needed in order to
validate the approach or to select from multiple options that are presented here. Moreover, this
work is based heavily on one CDN technology and network topology, and on the current version of
the CCN protocol (1.0 at the time of this writing). It is understood that other CDN technologies and
topologies exist, and that the CCN protocol will likely evolve over time. Application of this work to
other CDNs, and use of subsequent versions of the CCN protocol is left for future work.

Content Delivery with Content-Centric Networking

CableLabs® 5

2 REGIONAL IP NETWORK & CDN OVERLAY

To facilitate the description of the transition of a typical CDN to an Information-Centric architecture,
this section describes a model IP network topology with CDN overlay. The model is reflective of the
composition and scale of network design that would be typical in a mid-to-large size MSO with
multiple subscriber regions and only a few content origination locations.

2.1 REGIONAL IP NETWORK

To begin, we introduce a model of a typical cable operator regional network, which provides Internet
access to residents and businesses located within that region. Figure 1 shows a graphical
representation of the model network. The diagram depicts several Core Regional Access Networks
(CRAN), each of which provides Internet connectivity to a specific geographic region of the United
States. For simplicity, only the “XYZ CRAN” shows all components of the cable network down to the
individual subscriber, but it is assumed that these elements are also present in the other CRANs.

Figure 1 - Model Network Architecture

The portion of the network between the cable modems (CM) and the cable modem termination
system (CMTS) is referred to as the Hybrid Fiber-Coaxial (HFC) network. The fiber portion of the HFC
network connects each CMTS to multiple fiber nodes (FN), each of which serves a neighborhood (30-
300 CMs). The fiber node is located at the neighborhood, and it converts between the optical
signaling used on the fiber link, and the electrical signaling used on the coax feeders and drops that
reach the individual households and CMs. The network capacity between the CMTS, through a single
fiber node, to the 30-300 CMs is shared among that set of users. Ethernet frames are transported
over the HFC network using the Data-Over-Cable Systems Interface Specification (DOCSIS®).

From this point, our model network consists of a hierarchy of increasingly powerful routers that
aggregate traffic from the neighborhood fiber nodes to the network’s connection with the provider's
backbone. At the first level, aggregating traffic from multiple CMTS routers are the municipal routers
(MR). One level up from the MR is the aggregation router (AR), of which there are several to

Content Delivery with Content-Centric Networking

6 CableLabs®

accommodate the traffic from a handful of MRs. Finally, the ARs are connected to two core routers
(CR), which link this regional network to the long-haul links between regions. The AR nodes are
linked with each other to provide redundancy and paths for intra-regional traffic.

Many ISPs operate networks in multiple regions of a country, sometimes separated by hundreds or
thousands of miles. In the model network, we depict four regional networks (in addition to our
generic “XYZ” network), all connected to the operator’s Internet backbone; LAX, DEN, STL, and BOS.

2.2 CDN OVERLAY

A Content Delivery Network (CDN) is a collection of servers distributed throughout a network with
the intent of reducing core network load and improving application performance by bringing popular
content closer to the clients that are requesting it. In the model network, we use an open source
CDN implementation developed by Comcast Cable called Traffic Control [1]. The Traffic Control CDN
consists of three main applications; Traffic Router, Traffic Monitor, and Apache Traffic Server. There
are, in fact, several other applications that are part of the Traffic Control suite, but only these three
will be relevant in the description of our example CDN.

2.2.1 CACHE TIERS AND GROUPS

Caching servers in the Traffic Control system are divided into an implementation-specific hierarchy
of cache “tiers”. Requests for content that are not satisfied by a particular cache (cache-miss) are
forwarded on to the next tier up the hierarchy (see Figure 2).

Figure 2 - CDN Tier Structure

Within each tier, collections of individual caches form a Cache Group, each of which is assigned to a
geographic or topological region within the CDN. The model CDN has two tiers of caching, as
depicted in Figure 1. The Edge Caches (EC) are closest to the client devices in the network and
provide the fastest response times, and, consequently, the best user experience. Each CRAN has its
own Edge Cache Group to serve clients located within that region, and the clients only directly
interact with these ECs. While Figure 1 shows the entire EC Group being connected to a single AR in
the CRAN, it is more likely that the ECs will be distributed across multiple ARs in the CRAN.

http://traffic-control-cdn.net/

Content Delivery with Content-Centric Networking

CableLabs® 7

If a particular content item is not cached at the EC level, the requests are forwarded to the next tier
caches, the Mid Caches (MC). Mid Caches are fewer in number than Edge Caches and are
strategically located in a few CRANs to satisfy Edge Cache misses from a super-region (a set of CRANs
served by a Mid Cache Group). Our model network contains three super-regions, and thus three Mid
Cache Groups: West, Central, and East. Note that while an Edge Cache Group will have all of its
member ECs located within the same CRAN, Mid Cache Groups may very well have MCs distributed
across one or more CRANs (e.g., MC West has its MCs split across the LAX and DEN CRANs in the
model network). Finally, if the requested content is not found in the MC Cache Group, the requests
are sent to one or more Origin servers, which are always expected to have the content available.
Every cache server in the CDN runs a copy of Apache Traffic Server (ATS) to handle HTTP content
requests and proxying to the next-tier cache.

2.2.2 TRAFFIC ROUTER

The intelligence center of the CDN is the Traffic Router (TR) application. It serves as the central
arbiter for all content routing decisions. The TR contains a list of all caches in the CDN and their
positions in the caching hierarchy, called the Coverage Zone Map. The TR uses the information in the
Coverage Zone Map, along with a geolocation database that maps client IP addresses to locations
(CRANs), to identify the EC Group for a particular client.

In large scale CDNs, the resource requests for a population of clients are distributed across multiple
caches in the Cache Group. This improves scalability by allowing the load to be spread among
multiple caches. It also improves availability by allowing individual caches to be added to or removed
from the Group without significant disruption in CDN performance. In order to spread request load
across multiple caches in an effective way, it is important that all users' requests for a specific
resource be directed to the same cache. This maximizes the probability of a cache hit and eliminates
duplication of resources across multiple caches in the Group. This cache assignment is done using a
hashing algorithm, whereby some piece of information attached to the request message and unique
to the content being requested (asset ID, segment URL, etc. in the HTTP request header) is hashed,
and the hash value is used to determine which cache in the Cache Group will handle that content
request. This is typically done using a “consistent hash” algorithm [10], a specialized hashing
technique that ensures that even when the number of caches in the Cache Group changes, only very
limited remapping of content to caches needs to take place. In the Traffic Control CDN, the TR is
responsible for performing the consistent hash operation to direct a client request to the
appropriate first-tier cache, and each EC is responsible for the consistent hash operation when it
selects an MC. In the case that the consistent hash operation is done by multiple devices (e.g.,
multiple TR instances that serve the CDN, or the multiple ECs in the EC Group), it is important that all
of them utilize the identical mapping.

2.2.3 CONTENT ROUTING

The Traffic Router is responsible for directing clients to the most optimal Edge Cache given the
client’s location and the health of similarly located caches. There are two basic mechanisms used by
the TR to accomplish this task: DNS Routing [4] and HTTP Routing [5]. For both approaches, it is
necessary to make the TR instances be the authoritative DNS for all domains used to retrieve
content (with the requests being load balanced across the pool of TRs).

For DNS Routing, the client issues a DNS query for the hostname associated with the content it
wishes to retrieve. This DNS query is received by a local DNS server and forwarded to a TR instance.
The TR then simply looks at the hostname in the DNS lookup and responds with the IP address of an
EC selected based on that name and the IP address of the local DNS server that referred the request.
The client makes its content request directly to the server address that was produced as a result of
the DNS lookup. TRs can be configured with a list of hostname prefixes that should be handled using

Content Delivery with Content-Centric Networking

8 CableLabs®

DNS Routing. In DNS Routing, the TR would identify the zone of the client via the IP address of the
local DNS server, and then use a consistent hash of the requested hostname to select a specific EC
within the EC Group covering that zone. As a result, all clients in that zone would be directed to the
same EC whenever they attempt to access content at the same hostname. For CDNs that handle
diffuse requests across a large number of hostnames, this may be a sufficient method to distribute
those requests across the EC pool.

The more sophisticated routing mechanism is HTTP Routing. In this scenario, the TR responds to the
DNS query with its own IP address instead of a cache IP address. The client then issues the HTTP
content requests directly to the TR, at which point the TR responds with an HTTP 302 redirect to the
appropriate cache. This technique allows the TR access to more information regarding the request,
such as the client’s IP address and the HTTP request headers, including the full URL, which it can
then use to make more intelligent cache selection decisions.

In a typical content request operation (using HTTP Routing) the CDN interaction works something
like this. A client’s HTTP request for a particular content file arrives at the TR, due to the TR resolving
the URL hostname to its own IP address. The TR identifies the appropriate EC zone based on
information provided in the request (IP address, HTTP headers, etc.). The TR then selects a specific
EC in the EC Group covering that zone by executing the consistent hashing algorithm on some
portion of the URL or other information passed in the request. The TR then responds with an HTTP
302 redirect message pointing to the selected EC. In response to the 302 message, the client issues a
new request to that EC for the content. The result of HTTP Routing is that all clients within a zone are
directed to the same EC whenever they attempt to access the same URL.

2.2.4 "HOT" CACHES

While consistent hashing is highly beneficial for the reasons stated above, there is a side-effect
which needs to be considered. When a particular cache ends up serving highly popular content, it
can experience request frequency levels that exceed its ability to respond. In order to prevent this
situation, another Traffic Control component called “Traffic Monitor” continuously monitors the load
on each cache in a Cache Group and alerts the Traffic Routers when the load on an individual cache
exceeds a configured threshold.

The simple solution to this situation is for the TRs to treat the "hot" cache as unavailable for new
content requests until its load returns to a more acceptable level. By doing this, the consistent
hashing algorithm redistributes across the remaining caches in the Cache Group all new requests
that would have been assigned to the hot cache. Content requests that were already underway
continue to utilize the hot cache, but as these transfers finish, the load naturally reduces until the
cache can be marked as available again.

An effect of this solution is that the load (both in terms of requests per second, and in terms of
assigned content objects) on all of the other caches in the Cache Group increases, which both
reduces caching efficiency and increases the likelihood that another cache quickly becomes hot.

2.2.5 TRAFFIC MONITOR

The Traffic Monitor application is responsible for querying the health state of each cache and making
that information available to the Traffic Router. Every ATS cache exposes a private URL and REST API
that is used by the TM to access traffic statistics and other server status for that cache. Multiple TM
servers run in parallel, and each builds their own independent view of the current CDN health. The
TM consults a number of its peers and utilizes their responses, along with its independent view of
cache health, to calculate a health value that is consistent with information gathered across the
CDN. The TM periodically provides this information to the Traffic Routers.

Content Delivery with Content-Centric Networking

CableLabs® 9

A configuration called the Health Protocol instructs the TM of the circumstances under which a
cache is to be marked as “unavailable”. A cache may become unavailable due to high network traffic
loads, hardware or software anomalies, or other business-specific conditions that necessitate
temporarily removing the cache from a group. As stated earlier, the consistent hashing algorithm
prevents excessive re-mapping of content when Cache Group membership changes occur.

2.2.6 REQUEST AND CONTENT FLOW

To summarize the concepts introduced in the previous sections, let’s walk through the complete set
of steps involved in performing a content request and returning the desired content back from the
CDN. Assume that our client device has acquired the HTTP URL of a particular media file it wishes to
download.

To initiate the request, the client device resolves the domain name component of the media URL.
Our Traffic Router instance has been assigned as the authoritative DNS for the domain(s) associated
with all content managed by the CDN. When multiple TR instances are present in the CDN, DNS
requests are distributed across the instances in round-robin fashion. The TR resolves the domain
name with its own IP address which causes the client to send its HTTP request directly to the TR.

Upon receiving the HTTP request, the TR selects the appropriate EC Group based on its Coverage
Zone Map and the source IP address of the request. It then performs the consistent hash algorithm
to select one of the available ECs within the EC Group and return an HTTP 302 Redirect response to
the client, indicating the selected EC in the “Location” response header. In response, the client re-
issues its HTTP request to the selected EC.

When the EC has the requested content available in its content store, it is returned directly to the
client. Otherwise, the EC sends a request to the origin server, by way of a selected MC proxy. As
stated earlier, each EC is assigned to an MC Group and the EC executes another consistent hashing
process against some part of the request to select the individual MC within the MC Group. Upon
receipt of the request, the MC examines its content store for the requested data and returns it, if
found. If the content is not located with the MC, the cache forwards the request to the origin server,
and the content is returned to the client, hairpinning its way back through the MC and the EC.

3 CONTENT-CENTRIC NETWORKING

Information-Centric Networking (ICN) is a new approach to networking in which the addressable
element of the protocol is the “information” itself, rather than the host endpoints, as is the case
with IP today. Two main research groups are forging a path towards defining a standardized ICN
protocol. The Content-Centric Networking (CCN) project [2] was launched at the Xerox Palo Alto
Research Center (PARC) in 2009 and has an active body of participants from the research community
and industry. The Named Data Networking (NDN) project [3], led by UCLA, is funded by a grant from
the National Science Foundation (NSF) and has numerous research universities actively developing
the protocol and contributing new innovation ideas. Both NDN and CCN protocols have a common
root, and thus share many common design aspects. However, the protocols are, at this time,
incompatible. For the purposes of this paper, we will focus on the CCN architecture and its
associated semantics; however, much of what follows is true for NDN as well.

CCN/NDN protocols center around two primary packet types that facilitate a request/response
communication paradigm. The “Interest” packet is an information request message, and it contains a
unique name that identifies the resource being requested. The “Content Object” packet is the
response message, and it contains not only the resource data, but also additional information to
allow the requestor (or the network itself) to verify the provenance and integrity of that data. CCN

Content Delivery with Content-Centric Networking

10 CableLabs®

actually defines two types of Content Objects. The first type is a simple data object as described
earlier, and it carries the resource data as its payload. The second type is the “Manifest” Content
Object. A Manifest is a composition of data names that describe the complete contents of a
resource. Manifests can contain names that refer to simple Content Objects or even other
Manifests. The Manifest is useful for transporting large data resources over typical network links
that have constraints on the maximum packet size that can be transmitted. When a content
producer publishes a resource under a particular data name, the underlying CCN network stack may
actually respond to Interests for that name with a Manifest it generated, which splits the content
into manageable chunks. The network stack in the consumer, upon receiving the Manifest, then
generates Interest messages for all of the named data chunks listed in the Manifest to retrieve the
entire resource.

In addition to the new fundamental packet types, CCN introduces changes to the operation of
network routers (nodes). Most notably, CCN introduces on-path caching and stateful forwarding,
two attributes that radically change the dynamics of the network. Network nodes, called Forwarders
in the CCN architecture, receive and distribute packets via connection points called “Faces”. The
term Face has been introduced to separate itself from the typical view of a physical or logical
network interface. This is due to the fact that CCN Forwarders also exist on network endpoints and
communicate with applications via Faces.

A key feature of CCN is the ability for every network node to incorporate a data cache, or Content
Store. Content Objects passing through a Forwarder that are marked as “cacheable” by the publisher
can be stored and served in response to future Interests for that same named data. The decision
whether or not to cache a Content Object could be based on a policy set by the network operator, or
it could simply cache all cacheable objects. When a Forwarder receives an Interest packet, it first
checks its Content Store to see if it can respond directly. This functionality provides two main
benefits for the consumer and the network operator. First, popular content can be cached in the
network closer to the edge, with the result being that the consumer can expect to see lower average
latency on requests and an overall improvement in experience. For the network operators, data
requests satisfied at the network edge mean less traffic in the core network, which can lead to a
reduction in overall infrastructure and interconnection costs. As a result, one should consider if
caching in a CCN network could turn out to be a more elegant solution to content distribution than
the typical CDN architecture overlaid on a traditional IP network.

When a forwarder receives an Interest packet that can't be satisfied by the Content Store, the
forwarder needs to send that Interest on toward the appropriate producer. In order to do this, the
CCN Forwarder maintains a Forwarding Information Base (FIB). The FIB is analogous to the routing
table found in an IP router today. It contains a mapping of data name prefixes to egress Faces and is
used to route Interest packets through the Forwarder. An example routing policy for a FIB would be
a “longest prefix match”, in which the data name in the incoming interest is routed based on the
longest matching prefix entry in the FIB.

When a forwarder forwards an Interest using its FIB, it also records the data name of the Interest
and the Face on which the Interest arrived in its Pending Interest Table (PIT). The PIT is a form of
ephemeral state maintained by CCN Forwarders, and is the embodiment of the stateful forwarding
approach. The PIT state can be thought of as the “breadcrumb trail” left by an Interest packet as it
traverses the network. As a Content Object moves through the network, Forwarders use the PIT
table to determine the egress Face(s) on which the Content Object should be transmitted. To clean
up the state left by the Interest packets, the entries in the PIT are deleted as the Content Object is
delivered to the destination Face(s). CCN provides implicit multicast functionality when multiple
Interests for the same data arrive at a Forwarder, since only a single PIT entry is created (referencing
all relevant Faces), and thus a copy of the Content Object is delivered to all Faces identified by the
entry in the PIT.

Content Delivery with Content-Centric Networking

CableLabs® 11

As mentioned previously, an important aspect of CCN is the concept of object security (as opposed
to the connection security approach used in IP networks). Since the purpose of the CCN protocol is
to satisfy requests for specific Content Objects, it is important that a client be able to validate that it
received what it requested. Furthermore, since the requested Content Object could be delivered
from any of multiple Content Stores (including those in routers that are not affiliated with the
content producer), validating the server from which the client received the Content Object would be
pointless. CCN therefore has a built-in (and always on) mechanism for the client to validate the
provenance of a received Content Object. There are two forms that this mechanism can take. The
first form is that the producer signs the Content Object with a digital signature, and includes the
name of the producer certificate. If the client does not already have a copy of the producer
certificate, it can retrieve and then validate the certificate using a traditional PKI approach. The
second form is an optimization that reduces the production and validation complexity when a
resource is made up of multiple Content Objects. In this form, each of the Content Objects is hashed
(SHA-256), and the hash value is included in the manifest along with the Content Object name. The
Manifest is then the only signed Content Object.

A further optimization to the second form of provenance validation has been proposed, and is
currently being reviewed by the CCN community, under the moniker “nameless objects”. In this
proposal, a Content Object can be identified by its SHA-256 hash value alone. The Interest that a
consumer sends in order to retrieve a nameless object would include a non-unique name that is
primarily used for Interest forwarding via the FIB, and CS/PIT matching would be done solely by the
hash value.

Content Delivery with Content-Centric Networking

12 CableLabs®

4 CCN IMPACTS ON EXISTING NETWORKS

While CCN may have benefits over an HTTP-based CDN [6] [7], there are environments where an
HTTP-based CDN is already deployed, and here the analysis is a bit more complex. In order for CCN
to replace HTTP/IP, it needs to be introduced in a phased approach, minimizing disruption and cost,
and accruing incremental benefits along the way. This introduces constraints and complexities at
various phases of the transition that aren't present in the greenfield case. Whether these constraints
and complexities completely erode the benefits is an open question.

Two key technologies are required to enable this transition: CCN-HTTP translation and CCN/IP
tunneling. While these two technologies make the transition possible, they are the source of the
additional complexity in the brownfield scenario.

CCN-HTTP translators come in two forms (which we refer to as HTTP->CCN and CCN->HTTP), and
they allow an isolated CCN island to be deployed in an otherwise HTTP network. This allows a very
flexible roll-out that can target equipment that is more easily converted to CCN support, or that
provides early benefits. For example, an HTTP->CCN translator and a CCN->HTTP translator could
bookend a bank of CCN cache nodes. To the rest of the network, this collection of devices would
look and function as a large HTTP cache, and so could be introduced in place of such a cache.

The other transition technology, CCN/IP tunneling, is the expected method by which CCN will begin
to be deployed in the majority of networks, not just in CDNs. Thus CCN initially becomes an overlay
network over IP. Once multiple, isolated CCN islands are deployed, they can begin to be
interconnected via CCN/IP tunneling, reducing the amount of protocol translation that needs to take
place.

A combination of these two approaches is likely to provide the most attractive route to converting
an HTTP CDN to a CCN delivery platform.

The key network elements in the CDN to upgrade are the caches and the routers. In our view,
upgrading caches is likely to be more straightforward than upgrading routers, and has some near-
term payoffs.

The conversion begins with isolated islands of CCN (via the use of translators), and evolves those into
interconnected islands of CCN (via IP tunnels), then finally introduces native routing of CCN.

Content Delivery with Content-Centric Networking

CableLabs® 13

5 BENEFITS OF CCN RELATIVE TO HTTP CDN

The integration of CCN into an existing content distribution network has the opportunity to provide
a multitude of benefits when compared to the traditional HTTP approach. In the following sections,
we highlight a few of these benefits and the ways in which they can improve both the performance
and reliability of content delivery, and in doing so, we discuss the ways in which the benefits can be
introduced into an existing HTTP CDN.

5.1 SIMPLER, HIGHER PERFORMANCE CACHE IMPLEMENTATION

Compared to an HTTP cache such as Apache Traffic Server, a CCN cache is an extremely simple
device. While the HTTP cache needs to support managing TCP session state for all active connections
(both incoming requests to the server portion and outgoing requests from the client portion due to
cache misses), the CCN cache is totally connectionless and stateless. Also, the HTTP cache needs to
support the HTTP server and HTTP client protocol and maintain state between them, whereas the
CCN cache only parses a much simpler Interest message and then either returns a corresponding
Content Object packet (unchanged) from its Content Store, or forwards the Interest message (again,
unchanged). In many cases, the Interest name is expected to be in the form of a hash value, which
could be used to optimize Content Store lookup. Further, the storage medium can be highly
optimized based on the expected Content Object size. Since the vast majority of Content Objects will
be the same size, there would be little wasted cache space.

5.2 STRIPING OF CONTENT AND CACHE BALANCE

As described above, large HTTP-based CDNs may split user requests across a set of caches in order to
scale the caching platform performance. When doing so, user requests are distributed using a
consistent hash on some information in the request that is common to all similar requests from
other users. In some cases, the hashing is done on the URL of the content object being requested.

In an HTTP-based CDN that utilizes HTTP Routing, the TR needs to handle a potentially large number
of client requests, which may be a limitation on the scalability of the TR. Handling a single client
request likely involves multiple steps, as described in the Request and Content Flow section. In the
case of retrieval of DASH video content, the initial resource request is for an MPD file. These MPD
files commonly utilize relative pathnames as URLs for all of the subtending resources (so that the
asset is portable across multiple server platforms without needing to re-create the MPD). The result
is that the client will do one HTTP GET in order to retrieve the MPD, be redirected to an EC by the TR,
and then utilize the same EC for all further resource requests for that asset. While this reduces the
load on the TR, it also creates an asset-level granularity to the spread of content across the ECs in a
Cache Group – a pretty coarse distribution given that an entire video asset can be multiple gigabytes,
broken into thousands of resources.

When an EC has a cache miss, however, it can hash on the URL of the resource request in order to
select an appropriate MC, and thus the MC content can be spread at the resource level, which could
be 1000 times as fine grained as the asset level. However, even at the MC, large popular files (e.g.,
non-video) can result in one MC or another receiving a disproportionately greater load than the
others.

As a result, the HTTP-based CDN has issues with caches becoming hot, and it requires a mechanism
to prevent catastrophic breakdown, such as the one described previously.

In a CCN-based content distribution network, caches can be placed in-path between the clients and
the origin servers. In order to scale cache performance, it might be necessary to deploy multiple CCN

Content Delivery with Content-Centric Networking

14 CableLabs®

forwarders with content stores, similar to the Cache Group in the HTTP CDN. This could be done in
multiple ways; e.g., by the use of a switch fabric to fan-out the Interest messages across the pool
and then aggregate the forwarded (cache-miss) Interests on the other end as shown in Figure 3.
Another approach would utilize the existing topology of an HTTP-based CDN, where caches are
connected to a router (such as an Aggregation Router) in the regional network. Interests would be
similarly fanned out to the set of caches, and cache-miss Interests would be returned to the
Aggregation Router for forwarding toward the origin, as shown in Figure 4.

Figure 3 - In-Path Caching

Figure 4 - Out-of-Path Caching

In both cases, the task of performing the consistent hashing operation would fall on the CCN
forwarder immediately prior to the CCN Cache Group. This forwarder could be hashing based on the
Interest name, and thus could stripe the Interests (and resulting content) at an extremely fine-
grained level (at the content object level) across the Cache Group, essentially eliminating the hot
cache problem.

Because this is a local operation, the hashing entity is not concerned with identifying the location of
the client, and since the hot cache problem is eliminated, the traffic monitor infrastructure (and its
resulting communication with the TRs) is no longer needed. The hashing entity will, however, still
need to accommodate local caches going offline due to maintenance or failure, and new caches
coming online. This could be a local action that takes place within the forwarder itself.

One ramification of performing this hashing operation at the Interest/Content Object level is that
the hash operation needs to scale up at least two and possibly three orders of magnitude from how
it is done in an HTTP CDN. Whether this introduces a scalability concern or not is an open question.
However, we note that consistent hashing algorithms (such as the Highest Random Weight [8]
algorithm) can be designed with low complexity, particularly in the case where the number of bins is
small (as it is expected to be in the CDN case). Further, it may be reasonable, in certain instances
where complexity is a strong concern, to use a simpler hash function that relaxes the consistency
requirement (such as a modified jump consistent hash [9] or even a simple checksum). This may be
considered a good tradeoff, particularly because the elimination of the hot cache problem means
that caches will be added to or removed from the available cache pool much less often (i.e., only in

Content Delivery with Content-Centric Networking

CableLabs® 15

the case of failure or scheduled service), and cache removals are likely to result in replacement
caches being brought online in short order, perhaps obviating the need to redistribute requests.

In order to enable this striping benefit for a particular Cache Group, the caches need to natively
support CCN, and both the south-facing and the north-facing faces need to support CCN. Minimally,
this could be accomplished via an HTTP->CCN proxy south of the cache pool, and a CCN->HTTP proxy
north of the cache pool.

5.2.1 ISLANDS OF CCN CACHES

An EC Group in the example CDN could be targeted for conversion to CCN as follows. First, the
subset of the ECs that are attached to a single AR are marked as “unavailable” in the TR, and then
taken offline and upgraded to support CCN forwarding and Content Object caching. Second, a CCN-
>HTTP proxy is deployed north of this subset of ECs topologically, and the upgraded ECs are
connected to that proxy (tunneling CCN over IP if needed). Third, an HTTP->CCN proxy is deployed to
the south of the upgraded ECs topologically and the proxy is connected to the upgraded ECs (also
using tunneling if needed). Finally, the DNS records for the updated ECs are changed to map to the
HTTP->CCN proxy’s IP address, and those ECs are marked as “available” in the TR. Topologically, the
EC Group might appear as shown in Figure 5, and an example implementation of this is shown in
Figure 6, where an HTTP-CCN proxy appliance is inserted between the AR and the subset of attached
caches.

Figure 5 - CCN Island

Content Delivery with Content-Centric Networking

16 CableLabs®

Figure 6 - CCN Island Detail with Proxy Appliance

This introduction of CCN to a small portion of the network causes minimal disruption, and touches
only a small number of components. In fact, the TR and the clients would be unaware that the
transition occurred. The benefits, however, already begin to accrue. The probability of EC1, EC2 or
EC3 becoming “hot” is significantly reduced, since the aggregate of the content requests that are
assigned to those three ECs by the TR are now being striped at the Content Object level across the
three caches, so the load to each one is now equal to one third of their aggregate traffic load.

Additionally, in the implementation shown in Figure 6, the proxy appliance brings with it some of the
CCN Routing benefits (no hairpinning) that are described in Section 5.3, bringing further reductions
in the load on the ECs. The proxy appliance also sets the stage for further evolution of the CDN, as
described in more detail below.

Concerns with this arrangement might be the scalability of the proxy functions to handle the
aggregate traffic load, or that it introduces a single point of failure in the system. This is an open area
for research, but if it became an issue, one solution may be to deploy multiple devices as depicted in
Figure 7.

Figure 7 - Edge Cache Group with Multiple HTTP->CCN Proxies

Content Delivery with Content-Centric Networking

CableLabs® 17

5.2.2 PROPAGATING CCN BEYOND THE ISLANDS

Once all of the ECs in an EC Group have been updated as described above, it is possible to consider
migrating the HTTP->CCN proxy function closer to the client devices and striping all content requests
across the entire EC Group. For example, the HTTP->CCN proxy could be co-located with each MR
and handle all of the content requests for the subtending clients (possibly by using DNS routing as
described in the Content Routing section, or by using IP anycast addressing). Additionally, some
residential gateway devices could be updated to support HTTP->CCN proxy functionality (e.g., as a
transparent proxy). An upgraded EC group could be served by a mix of different HTTP->CCN proxies,
some in customer gateways and some in the network. Each of these translators needs to be
connected to the entire pool of upgraded ECs, likely via the use of IP tunneling. In the case of in-
network proxies, static tunnels seem appropriate. In the case of placing proxies in gateway devices,
it would be worth considering dynamic tunnel creation.

A similar approach as has been described for introducing CCN support in an EC Group can also be
applied at an MC Group. Once an entire MC Group and all the EC Groups associated with it have
been upgraded to support CCN, the CCN->HTTP proxy north of the ECs and the HTTP->CCN proxy
south of the MCs can be shut off and replaced with simple CCN tunneling over IP.

In the example architecture utilizing a translation appliance as shown in Figure 6, once the HTTP-
>CCN and CCN->HTTP proxy functions have been disabled in that appliance, what is left is simply a
set of tunnel termination points and a CCN router.

5.3 CCN ROUTING - NO HAIRPINNING

Upgrading IP routers to natively support CCN forwarding allows further benefits to be accrued. In
particular, it can reduce the complexity of IP tunneling, and minimize the amount of protocol
translation in the network. Routers to which CCN caches are attached are particularly attractive
candidates to be upgraded to support native CCN forwarding. While CCN supports in-path caching
along the producer-to-consumer route, it may be some time before high-performance routers
support large caches. As a result it is important to consider utilizing off-path caches in CCN. This also
aligns with our example CDN topology, where ECs and MCs are attached to Aggregation Routers in
the regional networks.

In this configuration, it is necessary to have content requests enter the router, be routed out to a
selected cache, and then, in the case of a cache-miss, re-enter the router to be forwarded to a
higher-layer cache or to the origin.

In one approach, the Aggregation Router has a FIB that takes into account ingress interface. Name
prefixes, that are being handled by the caching infrastructure, would have FIB entries that point to
the faces to which the caches are attached for the case when the Interest arrived from a consumer-
facing face, and they would point toward the higher-layer cache (or origin) for the case when the
Interest arrived from a cache-facing face. Thus an Interest from a consumer would be routed to the
caches, and upon a cache-miss, the cache would simply forward the Interest back to the AR, where it
would then be routed toward the higher-layer cache. As a result of this process, only a single PIT
entry is created in the AR, regardless of whether there was a cache hit or a miss. In the case of a
cache miss, the PIT entry would list two faces, one identifying the consumer's face, the other the
cache's. Once the content object returns to the AR from a higher-layer cache or origin, it would be
duplicated and sent to both the cache and the consumer.

In this approach, we propose that the cache has a specialized forwarder that functions as follows.
The cache has a single face that represents its network connection to the AR. When an Interest
arrives from that face, the cache examines its Content Store (as would any CCN forwarder), and
responds with the cached object, if possible. Upon a cache miss, the forwarder simply returns the

Content Delivery with Content-Centric Networking

18 CableLabs®

Interest to the AR on the same face it arrived, and does not create a PIT entry. When the cache
receives a content object, it simply inserts it into its Content Store.

By this process, the traffic on the link from the cache to the AR is significantly reduced in the case of
a cache miss, consisting solely of Interest messages. The content returning from a higher-layer cache
does not hairpin through the cache as it would in the HTTP case. Neglecting the size of Interest
messages (since they are a small fraction of the Content Object size in the case of most content), this
would be a bandwidth reduction equal to the cache hit ratio (i.e., if the cache hit ratio is 40%, the
link bandwidth for CCN would be reduced by 40% compared to HTTP). The AR forwarding path
would be reduced by a similar amount.

5.4 MULTICAST

Support for multicast distribution of Content Objects is built into the CCN protocol in the case that
Interest messages from multiple clients are tightly correlated in time. In the case that Interests are
spread out by the RTT (or less), multicast does not occur (but ideally cache hits would still provide a
benefit in this case).

Since many access network links are costly and are shared media links with the ability to take
advantage of multicast distribution (e.g., DOCSIS and PON), and since some applications (notably
linear video) may benefit from it, it is worthwhile to consider how to encourage multicast
distribution across those links.

One approach would be to enforce some strict time alignment between the hosts that are
requesting the same linear video asset. This approach seems complex. The timing accuracy
requirement could be reduced by delaying Content Object responses (thereby artificially increasing
the RTT), but that only distributes the complexity.

Another approach is to deploy specialized CCN caching behavior in CPE gateway devices. In this
approach, the gateway would identify the linear video stream being watched by a subtending client
device, and would pre-emptively cache "future" Content Objects that are seen on the network for
that same video stream. Depending on the amount of cache storage in the gateway, this could
enable multicast distribution across a fairly wide range of time misalignment.

Content Delivery with Content-Centric Networking

CableLabs® 19

6 CCN TRANSITION COMPONENTS

6.1 HTTP->CCN PROXY

The HTTP->CCN proxy function is the combination of an HTTP server and a CCN consumer. This is a
straightforward function that receives an HTTP GET from a client, and generates the CCN Interest
messages in order to retrieve the requested object from a CCN network.

In some cases, the CCN forwarder within this device needs to support being configured with multiple
egress faces that are connected via CCN/IP tunnels to other CCN forwarders in the network (e.g.,
caches). In these cases, the forwarder implements consistent hashing on Interest name in order to
distribute the content requests across the available caches.

Figure 8 - HTTP->CCN Proxy

For performance and scalability reasons, it is expected that the HTTP server will cut-through the
arriving Content Objects, rather than waiting to receive the entire resource.

This function could live in several different places in the network where it can have a stable IP
address of which client devices can be made aware. One logical location for this function is in a
home gateway device.

6.2 CCN->HTTP PROXY

The CCN->HTTP proxy function is the combination of a CCN publisher and an HTTP client. This
function is a bit more complex than the HTTP->CCN proxy. Upon receiving a CCN Interest message
from a consumer, this function needs to identify the corresponding HTTP resource, fetch the set of
bytes that comprise the requested content object, and then return those bytes in an appropriately
formatted content object. In the case, that the Interest was the initial Interest that is requesting a
CCN Manifest, the proxy function will need to return a CCN Manifest for the resource.

We propose that an algorithmic mapping between HTTP resource name (i.e., URN) and CCN Name
be established such that all translation proxy functions can generate one from the other.

There are a couple of options for handling the rest of the CCN->HTTP proxy functions. For the initial
Interest case, where a Manifest is expected to be returned to the consumer, the CCN protocol is

Content Delivery with Content-Centric Networking

20 CableLabs®

expected to standardize on a Manifest format that provides a list of the content object names
and/or the content object hashes that make up the resource. The appropriate Manifest could be
generated by the CCN->HTTP proxy each time an initial Interest is received, or it could be generated
once and made available to all CCN->HTTP proxies via the origin server. In the case that the Manifest
is generated by the CCN->HTTP proxy, the proxy would need to retrieve the resource size, calculate
the number of content objects based on a pre-configured Content Object size, algorithmically
generate the needed Content Object names, sign the Manifest, and then return it to the consumer.
In this approach, it seems unreasonable to expect the CCN->HTTP proxy to generate content object
hashes for each of the Content Objects, since doing so would require retrieving the entire resource.
The implication of this is that hash-based Content Object validation would not be possible, and so
the system would need to rely on signature-based validation of each Content Object. Thus, when the
individual Interests for the Content Objects making up the resource are requested, the CCN->HTTP
proxy would algorithmically determine an appropriate HTTP Range Request in order to retrieve the
requested bytes, and then sign the Content Object as it is generated, allowing the consumer to then
validate the signature. Alternatively, if the CDN is deployed in a closed network and Content Object
signing creates a performance bottleneck, perhaps it would be attractive to disable Content Object
validation.

Another approach would be to have the Manifest file generated once for each HTTP resource, and
then made available (e.g., on the origin server). In this case, the Manifest generation function could
calculate Content Object hashes for each of the Content Objects and include those in the Manifest,
eliminating the need to have the CCN->HTTP proxy sign any Content Objects, and enabling the
consumer to use the simpler hash-based validation. The Manifest file generated in this method could
include additional information that is of use to the proxy, such as an explicit HTTP Range Request
URL for each Content Object, eliminating the need for algorithmic generation of this URL by the CCN-
>HTTP proxy. In some cases with this approach it would be expected that the CCN->HTTP proxy
would retain a cached copy of the information in this Manifest file, to avoid repeatedly fetching it.

Figure 9 - CCN->HTTP Proxy

Content Delivery with Content-Centric Networking

CableLabs® 21

7 UNSOLVED PROBLEMS

The previous sections proposed some ways in which CCN can be incrementally integrated into an
existing CDN. However, the architectural description is by no means complete. There are several
categories of problems that have yet to be addressed. Solutions to these problems will be required
in any fully functional implementation.

Optimized CCN Router Implementation - Core and Edge IP router implementations have seen
decades of development and optimization, whereas CCN router development is in its infancy, with
only proof-of-concept implementations available at present. The topics of FIB/PIT sizing and memory
bandwidth requirements, and content store implementation have been studied, but real
development will require a stronger market signal to emerge.

Optimized CCN Cache Implementation - As discussed earlier, caching in CCN content stores is
dramatically simpler than the equivalent in the HTTP world, and opportunities exist for very high
performance caches. However, current implementations run in user-space and are explicitly referred
to as non-optimized reference implementations.

Congestion Avoidance (CA) - In CCN networks, congestion avoidance is performed by the consumer
rather than by the producer (server) as it is in TCP, and it consists of pacing the transmission of
Interest messages in order to ensure that the delivery of a requested resource can make maximal
fair use of the network. Current CCN CA algorithms are largely based on the TCP Congestion
Avoidance algorithm, which presumes that the bandwidth-delay product of the network varies
relatively slowly since, in large part, all data packets traverse the same path from server to client. In
contrast, the Content Objects in a CCN resource request may be delivered from various producer or
Content Store locations, and may take multiple paths to reach the consumer, so the concept of a
bandwidth-delay product for the resource request as a whole can’t be defined, making TCP-like CA a
poor fit for CCN networks. This is an active area of research in the CCN community.

Cache control & semantics - Content distributors must have explicit controls for how and when
content is cached in their networks. While the CCN protocol specifies an EXPIRY_TIME field in
Content Objects, it lacks any further mechanisms for prioritization and on-demand purging of cached
data. A network-wide control protocol needs to exist which allows for deleting objects (or otherwise
making them unavailable) from network caches and updating cache policies. In a CCN world, where
content is now an integral part of the network, it is likely that this functionality would be integrated
into network management and monitoring systems.

Content Object size & fragmentation - The Content Object is an atomic unit of data that can be
transferred across the CCN network, in many ways the corollary to a packet in an IP network. At the
time of the writing of this paper, a maximum Content Object size (MTU) for CCN had not been
specified, and there is some expectation that it may be larger (perhaps significantly larger) than the
MTU in IP networks, thereby reducing the Interest message burden. In some cases, it may be
necessary to fragment a large Content Object (either due to link technology limitations, or in order
to reduce head-of-line blocking latency). While nothing has been specified yet with regard to this
fragmentation mechanism, proposals have been made that it be done at the link level, so that it is
transparent to the CCN forwarding plane.

Network Control -- Many of the routing policies introduced in this document are heavily dependent
on the idea that all routers have a consistent understanding of the hashing policies to be used at
each tier of the CDN. A change in the number of caches at any time or for any reason would require
a simultaneous update of routing policies across several nodes in the network. A centralized network
control mechanism would need to be in-place to perform these updates. This is likely a good
application for SDN concepts.

Content Delivery with Content-Centric Networking

22 CableLabs®

CCN->HTTP Conversion -- In this paper we have described the need to perform conversion of CCN
Interests to HTTP Requests, particularly in the early stages of the transition. We have proposed two
methods to achieve this, but neither has been validated. We have some concerns that
computational complexity of this function will make the earliest stages of the transition less
attractive, and thus jeopardize the transition as a whole.

HTTP->CCN Conversion -- The conversion of HTTP requests into CCN Interests is simpler
computationally than the inverse conversion. That said, we have not validated the approach
experimentally, nor are we aware of implementations that could be utilized for experimentation.

Business Rules and Monetization – CDN may need to have features above and beyond the technical
aspects of delivering content. Support for similar business-specific functionality and mechanisms for
monetizing the distribution of partner content is needed in a CCN implementation as well.

8 CONCLUSION

CCN architectures are ideally suited to replace and improve upon the existing CDN overlay
applications we have come to rely upon. Content, identified by a unique name, is returned to
consumers by the closest node on the network that can provide it. In-network caching naturally
facilitates the storage of popular content closer, topologically, to the clients that are requesting it. In
addition, the request/response model used most widely for content delivery today (HTTP/S) is a
fundamental part of the CCN paradigm in the form of Interest and Content Object packets. Finally,
security implemented at the Content Object-level is a better fit for content distribution, and avoids
many of the problems inherent in the end-to-end connection encryption approach (TLS).

It is possible to realize significant benefits through an incremental introduction of CCN into an
existing CDN implementation. CCN->HTTP and HTTP->CCN proxies can create small “islands” of CCN
functionality that can begin to eliminate some of the performance and management issues
encountered in modern CDNs. By striping content across multiple caching routers at the Content
Object-level, the “hot cache” problem is eliminated. Additionally, link utilization is reduced because
content retrieved from higher-tier cache levels will not “hairpin” through the caches on the way to
the client as it does today. It is important to note that these benefits can be achieved without
making modifications to existing IP routers.

While the architecture proposed in this paper initially relies heavily on the CCN and HTTP proxy
appliances, we are careful to point out that no proof-of-concept implementations have been
developed at this time. It is unknown whether the processing requirements of these appliances will
significantly impact the cost of the transition, and thus offset the benefits provided by CCN. More
feasibility studies are required to determine the cost and scalability of these proxy devices in a high-
volume CDN implementation.

Content Delivery with Content-Centric Networking

CableLabs® 23

APPENDIX A ALL CACHES SUPPORT CCN

By following the incremental integration approach defined in this paper, the CDN will eventually
arrive at a deployment state in which all caches and origin servers have been upgraded to support
CCN. At this point, there will be a mesh of CCN-over-IP tunnels between caches in adjacent tiers of
the CDN. Consistent hashing policies among the network nodes will ensure even distribution of
content across all caches at each tier. Additionally, only HTTP->CCN proxies will still be present in the
system, as the need for the more complex CCN->HTTP proxies has been eliminated. Further, the
proxy appliances that were deployed at each caching layer have now essentially become CCN
routers. At this point, it may be feasible to subsume the actual caching functionality into those
routers rather than keep the caches as distinct entities.

The HTTP->CCN proxies, however, will likely be required for much longer due to the need to support
legacy client devices that will not be able to generate CCN network requests. The performance
requirements of the HTTP->CCN proxies can be reduced by moving them closer to the network edge.
As depicted in Figure 10, each “Service Group” (set of home gateway devices served by a single
Municipal Router (MR)), can be assigned a proxy (connected to the MR) which will serve the
requests of all legacy clients. The legacy clients can be directed to the closest proxy by the TR, or by
using IP anycast. Using IP anycast, all proxies can be assigned the same network address and clients
will be directed to their nearest proxy, topologically. In that case, the TR is no longer required.

Figure 10 - Example CRAN with all Caches Upgraded to CCN

Content Delivery with Content-Centric Networking

24 CableLabs®

As a further step, the home gateways of individual subscribers can be updated with their own proxy
implementations to serve devices within the home, reducing the dependency on the top-level proxy
for that Service Group. The upgraded gateways would function as transparent proxies, intercepting
traffic destined for the CDN and performing HTTP->CCN conversion implicitly. We can now start to
introduce clients and applications that support native CCN-based content requests (over IP tunnels).

Throughout the description of this transition process, we have mostly avoided the discussion of
updating routers to support CCN natively. Instead, we have chosen to represent CCN links as IP
tunnels, and have shown the transformation of many of the proxy appliances into what amounts to
simply CCN routers. In any plausible transition to CCN, IP routers will most certainly be upgraded to
support both CCN and IP networks. Therefore, the primary area of concern will be in the
performance implications of processing new network packet types. It is possible that existing routers
may be able to support CCN through firmware updates, but it is unknown how well these platforms
will scale without CCN-specific hardware support. The ideal solution may involve replacing the
existing routers with new hardware that has been optimized for both CCN and IP network traffic.

Content Delivery with Content-Centric Networking

CableLabs® 25

APPENDIX B REFERENCES

[1] http://traffic-control-cdn.net/

[2] http://www.parc.com/services/focus-area/content-centric-networking

[3] http://named-data.net/

[4] http://traffic-control-cdn.net/docs/latest/overview/traffic_router.html#arrow-dns-content-
routing

[5] http://traffic-control-cdn.net/docs/latest/overview/traffic_router.html#arrow-http-content-
routing

[6] M. Mangili, F. Martignon, A. Capone, “A Comparative Study of Content-Centric and Content-
Distribution Networks: Performance and Bounds”, IEEE Global Communications Conference
(GLOBECOM), pp. 1403-1409, 2013

[7] D. Ma, Z. Chen, “Comparative Study of CCN and CDN”, IEEE INFOCOM Student Activities
(Posters), pp. 169-170, 2014

[8] Thaler, David; Chinya Ravishankar. "A Name-Based Mapping Scheme for Rendezvous".
University of Michigan Technical Report CSE-TR-316-96,
http://www.eecs.umich.edu/techreports/cse/96/CSE-TR-316-96.pdf.

[9] J. Lamping, E. Veach, “A Fast, Minimal Memory, Consistent Hash Algorithm”, Google,
http://arxiv.org/pdf/1406.2294.pdf

[10] Karger, D.; Lehman, E.; Leighton, T.; Panigrahy, R.; Levine, M.; Lewin, D. (1997). Consistent
Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web. Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of
Computing. ACM Press New York, NY, USA. pp. 654–663. doi:10.1145/258533.258660

http://traffic-control-cdn.net/
http://www.parc.com/services/focus-area/content-centric-networking
http://named-data.net/
http://traffic-control-cdn.net/docs/latest/overview/traffic_router.html#arrow-dns-content-routing
http://traffic-control-cdn.net/docs/latest/overview/traffic_router.html#arrow-dns-content-routing
http://traffic-control-cdn.net/docs/latest/overview/traffic_router.html#arrow-http-content-routing
http://traffic-control-cdn.net/docs/latest/overview/traffic_router.html#arrow-http-content-routing
http://www.eecs.umich.edu/techreports/cse/96/CSE-TR-316-96.pdf
http://arxiv.org/pdf/1406.2294.pdf
https://en.wikipedia.org/wiki/F._Thomson_Leighton
https://en.wikipedia.org/wiki/Daniel_M._Lewin
http://portal.acm.org/citation.cfm?id=258660
http://portal.acm.org/citation.cfm?id=258660
http://portal.acm.org/citation.cfm?id=258660
https://en.wikipedia.org/wiki/Symposium_on_Theory_of_Computing
https://en.wikipedia.org/wiki/Symposium_on_Theory_of_Computing
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%2F258533.258660

Content Delivery with Content-Centric Networking

26 CableLabs®

DISCLAIMER

This document is furnished on an "AS IS" basis and neither CableLabs nor its members provides any
representation or warranty, express or implied, regarding the accuracy, completeness,
noninfringement, or fitness for a particular purpose of this document, or any document referenced
herein. Any use or reliance on the information or opinion in this document is at the risk of the user,
and CableLabs and its members shall not be liable for any damage or injury incurred by any person
arising out of the completeness, accuracy, or utility of any information or opinion contained in the
document.

CableLabs reserves the right to revise this document for any reason including, but not limited to,
changes in laws, regulations, or standards promulgated by various entities, technology advances, or
changes in equipment design, manufacturing techniques, or operating procedures described, or
referred to, herein.

This document is not to be construed to suggest that any company modify or change any of its
products or procedures, nor does this document represent a commitment by CableLabs or any of its
members to purchase any product whether or not it meets the characteristics described in the
document. Unless granted in a separate written agreement from CableLabs, nothing contained
herein shall be construed to confer any license or right to any intellectual property. This document is
not to be construed as an endorsement of any product or company or as the adoption or
promulgation of any guidelines, standards, or recommendations.

ACKNOWLEDGMENTS

The authors would like to thank Jan Van Doorn (Comcast Cable) for his contributions to this paper.

	Content Delivery with Content-Centric Networking
	Executive Summary
	1 Introduction
	2 Regional IP Network & CDN Overlay
	2.1 Regional IP Network
	2.2 CDN Overlay
	2.2.1 Cache Tiers and Groups
	2.2.2 Traffic Router
	2.2.3 Content Routing
	2.2.4 "Hot" Caches
	2.2.5 Traffic Monitor
	2.2.6 Request and Content Flow

	3 Content-Centric Networking
	4 CCN Impacts on Existing Networks
	5 Benefits of CCN Relative to HTTP CDN
	5.1 Simpler, Higher Performance Cache Implementation
	5.2 Striping of Content and Cache Balance
	5.2.1 Islands of CCN Caches
	5.2.2 Propagating CCN Beyond the Islands

	5.3 CCN Routing - No Hairpinning
	5.4 Multicast

	6 CCN Transition Components
	6.1 HTTP->CCN proxy
	6.2 CCN->HTTP Proxy

	7 Unsolved Problems
	8 Conclusion
	Appendix A All Caches Support CCN
	Appendix B References

